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LANGEVIN REPRESENTATION OF COULOMB COLLISIONS 
IN PIC SIMULATIONS 

1. Introduction 

The development of particle-in-cell (PIC) simulation codes1"3 was originally 

motivated by work on the physics of high-temperature collisionless plasmas. In much of 

the early work, measures were taken to reduce the influence of numerical collisions and 

render the simulation as close to collisionless as possible. However, in recent years much 

interest has been drawn to plasmas where collisions play a central role, such as the low- 

temperature partially ionized plasmas used for materials processing. In these plasmas, 

collisions between charged particles and neutral species are always important; indeed, 

the gas chemistry that is central to the processes of interest is often driven by electron- 

neutral (e-n) collisions. Thus, methodologies have been developed for modeling electron- 

neutral collisions within PIC codes. The most widely used approach is to append a 

Monte Carlo (MC) step at which probabilistic scattering occurs between a randomly 

selected charged particle and a neutral particle. Codes of this type are usually called 

PIC/MC codes.4"13 A related technique that has been widely used in neutral gas 

aerodynamics is called direct simulation Monte Carlo (DSMC).14 In most cases, electron- 

electron (e-e) scattering has not been included in this type of code 

However, in high density processing plasmas such as electron cyclotron resonance 

(ECR), helicon, and inductively coupled plasmas, electron densities can exceed 1012 cm"3, 

and e-e collision frequencies can exceed those of e-n collisions. Even in cases where 

pitch-angle scattering is predominantly due to e-n collisions, e-e collisions can be crucial 

in determining the electron energy distribution function (EEDF). In many types of 

discharge, the energy input is primarily into the thermal part of the EEDF, and the high- 

energy tail is populated primarily by energy up-scattering consequent to e-e collisions. 

Electron-electron collisions always drive the EEDF toward Maxwellian, but there may be 

a competition with inelastic e-n collisions which deplete the high-energy tail, and in a 

bounded plasma with escape of high-energy electrons to the walls. The high-energy tail 

controls atomic excitation, ionization, and to some extent plasma chemistry, and thus 

determines many of the properties of a plasma that are crucial for processing applications. 

In addition, sheath potentials are determined by the competition between escape of high- 
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energy electrons to the wall and repopulation of the high-energy tail by collisions. Thus, 

it is essential that both e-e and e-n collisions be modeled accurately, particularly in the 

case of high density discharges. 

We have recently developed a 2-D axisymmetric PIC/MC model of an ECR 

discharge with strongly magnetized electrons.15 The unique feature of our model is that 

both electrons and ions are represented by particles, but the electrostatic field is 

determined from the requirement of quasineutrality, rather than by solving Poisson's 

equation. Therefore, plasma oscillations are absent from the model, and it is possible to 

use time steps many orders of magnitude longer than the electron plasma period, as well 

as spatial gridding much coarser than the Debye length XD- In the model, elastic, 

inelastic, and ionizing e-n collisions are handled with a Monte Carlo collision scheme. In 

this paper, we describe the formulation which we have developed to include electron- 

electron and electron-ion collisions. We believe it is suitable for use in a wide variety of 

simulation applications. 

In DSMC simulations of low-density neutral gases, collisions are modeled by 

picking out nearby pairs of particles, at regular intervals, and allowing various types of 

collisions to occur between them. The determination of which type of collision occurs 

(e.g., elastic, excitation, ionization, scattering angle, etc.) depends on the choice of 

random numbers, with probabilities determined by the relevant cross-sections. In 

PIC/MC simulations of plasmas, collisions between charged and neutral particles are 

treated in a somewhat similar way, but usually the grid is used as an intermediary in the 

collision process, i.e. the density of a particular neutral species is laid down on the grid, 

and then the probability of an electron colliding with that species is proportional to the 

density. The most straightforward way to represent e-e collisions in a PIC code would be 

to use the DSMC procedure, i.e., at appropriate time intervals, to pick out a number of 

pairs of electrons and collide them with the statistics appropriate to individual electron- 

electron collisions. The problem with this approach is that e-e collisions occur 

predominantly at long range, so that they are actually a succession of very many small 

angle scatterings. In order to represent individual collisions with any degree of accuracy, 

it would be necessary to use an extremely small time step. In fact, even at a given instant 



of time, an electron will typically be scattering off many other electrons simultaneously. 

Thus it is numerically inefficient, and really inappropriate physically, to treat e-e 

scattering as a sequence of MC collisions. Weng and Kushner16 used an approach rather 

more in the spirit of plasma PIC/MC, where electrons collided off electron density/energy 

distributions laid down on the grid, with statistics chosen as a rough approximation to the 

Coulomb cross section for individual e-e collisions. Although this approach has some 

numerical advantages over the DSMC approach, it still suffers from the requirement of an 

extremely small time step to resolve the time between individual collisions. 

An alternative approach which has been emphasized in the analytical development 

of plasma kinetic theory is to represent Coulomb scattering through a Fokker-Planck 

equation.17*19 In the context of a PIC simulation, it is possible to construct a Langevin 

equation (comprising a deterministic friction and a random diffusive scattering) which is 

entirely equivalent to any given Fokker-Planck equation.20 The dynamical friction and 

stochastic diffusion coefficients for the Langevin equation are represented as velocity- 

dependent grid quantities, which are simply added to the macroscopic electric and 

magnetic forces acting on the electrons. Thus, e-e scattering is in effect represented as a 

scattering of a single electron off the grid, rather than as a pairwise process. 

A grid-based Langevin formalism for e-e scattering has recently been developed 

by Jones, et al.21 In this paper, a key simplification is made, which eases the 

implementation of the scheme. This is the use of a velocity-independent dynamic friction 

Fa and scalar velocity-space diffusion coefficient D, equivalent to treating e-e scattering 

as an isotropic scattering event with a collision frequency v that is independent of the 

velocity of the test electron. Specifically, 

Fd = -vv, (la) 

D = 2vTe/m, (lb) 

where v is the velocity of the test particle, and Te is the electron temperature. These 

coefficients Fa and D are consistent with each other, and therefore the Langevin equation 



conserves momentum and energy (to first order in the time step), and correctly drives the 

EEDF toward a Maxwellian distribution with zero mean velocity and temperature Te. 

Furthermore, Jones et al21 use the Spitzer coefficients Fd and D, which are the appropriate 

averages over an assumed Maxwellian velocity distribution of test and field electrons. 

For many applications, these properties may be sufficient. However, the Coulomb 

scattering process is in fact highly anisotropic (nearly all scattering events are very weak) 

and strongly velocity dependent, falling off as v"3 for superthermal electrons. As a result 

the coefficients Fd and D are greatly overestimated in Eqs. (1), for superthermal electrons. 

The time scale for populating the tail of the EEDF is very much understated by these 

equations, and if there is competition between e-e collisions and inelastic e-n collisions, 

the use of Eqs. (1) can give a very inaccurate picture of the EEDF in steady state. 

In this paper, we build on the work of Jones, et al,21 to construct a Langevin 

scattering formalism which accurately represents the multiple small-angle Coulomb 

scattering process, with velocity-dependent friction and diffusion coefficients derived 

from the actual electron distribution. The derivation of these coefficients is reviewed in 

Section 2. Some approximations are made which enormously simplify the formulation 

and reduce the size of the data sets needed. The most notable of these is the assumption 

of an isotropic electron velocity distribution function in calculating the dynamical friction 

Fd and the diffusion tensor D. In Sec. 3 we consider the application of the formalism to a 

magnetized-electron plasma such as an our discharge plasma. In order to reduce 

calculational time, data complexity and statistical fluctuations, the normalized EEDF used 

to calculate Fd and D is averaged over a field line (but the actual electron density at each 

grid cell is used.). The basic Langevin formulation is energy and momentum conserving, 

but some of the approximations, finite time steps, and statistical fluctuations can 

introduce minor deviations from conservation. In Sees. 2 and 4 we show how to restore 

exact conservation in an efficient way. In Sec. 5 we discuss the extension of the 

Langevin scattering formalism to electron-ion scattering, which is in fact very much 

simpler than e-e scattering. In Sec. 6, we show the results of several computational 

exercises, which demonstrate the way in which e-e collisions drive the electron 

distribution first toward isotropy, and then (in the absence of other collisional processes) 



toward a Maxwellian. We also show, using a simplified model of an argon plasma, how 

the competition between e-e collisions and inelastic e-n collisions determines the high- 

energy tail of the EEDF. In Sec. 7 the results are summarized. 

2. General Formulation 

A. Review of the Derivation of the Fokker-PIanck Equation for Coulomb Scattering 

The formulation of the Langevin equation for the electrons starts with the 

Boltzman collision integral for electron-electron collisions: 

^arl =nJd3Vgol[f(vW,)"f(v)f(v)]' (2) 
lee 

where the tilde indicates the field electron with which the electron of interest is colliding, 

the prime refers to the value of a quantity after a collision and unprimed denotes the value 

before the collision, g = v - v is the relative velocity, n is the electron number density, 

and the electron distribution functions are normalized to unity. The Coulomb scattering 

cross section is19 

da e4 

dß    m2g4sin4(9/2) 
(3) 

where 8 is the scattering angle in the center of mass frame.    For electron-electron 

scattering, 6 is related to the impact parameter b by 

e = 2tan_1 

^mg2b 
(4) 

The relative velocity after the scattering is 



g' = g + Ag, (5) 

and of course, the scattering is a rotation in the center of mass frame, so g' = g. If the 3- 

coordinate is taken parallel to g, and the 1,2 coordinates perpendicular to g, then 

Ag = g {sinG cos<j), sin9 sin<j), -2 sin2(6/2)} (6) 

and 

Vi^Vi + Ag/2,       Vj' = Vj-Ag/2 (7) 

Because of the sin"4^) dependence of the scattering cross section in the 

Coulomb potential, the collisions are dominated by multiple small angle scattering. In 

fact, when integrating Eq. (2) over 6, the result diverges logarithmically as the lower limit 

of integration 6m approaches zero. This divergence is resolved by assuming that the 

Coulomb force is shielded over a distance of order the Debye length, and therefore setting 

the minimum scattering angle 6m equal to 

em=2tan-1 (   2e2   ^ 
mg XD 

(8) 

The terms f(v') and f(v') in the integrand can then be expanded in powers of Ag. It is 

not difficult to show that the only terms which suffer the divergence as In 6m are the terms 

involving the first and second derivatives of f(v). These are therefore the dominant terms, 

and it is appropriate to neglect higher order. One further approximation is made: in the 

specification of em, Eq. (8), the relative velocity g of the pair of colliding electrons is 

replaced by the thermal average electron velocity ve. Since the dependence on em is very 

weak (logarithmic), the results are insensitive to this approximation, which greatly 

simplifies the formalism. This leads to the standard expression 



3f 
at l^(v)f(v)+iäl:D(v)f(v) (9) 

where 

„ , ,    4raie4 , 9H 
Fd(V) = lr^Xä7' (10a) 

n, ,    47me4, 32G 
D(v) = 2-X3-3-, 

m       a\d\ 
(10b) 

X = ^nl-csc6mJ, (11a) 

6m=2tan -1 <    2e2    ^ 
(lib) 

H(v) = 2 d'Ä 
v-v 

(12a) 

G(v) = Jd3vf(v)|v-v|. (12b) 

This then defines the Fokker-Planck equation for electron-electron scattering. The 

coefficients G(v) and H(v), which govern the diffusion and dynamic friction, are scalar 

functions of the vector velocity v. Since the Fokker-Planck equation is the lowest order 

expansion of the Boltzmann collision integral in powers of X'1, it retains the important 

characteristics of the Boltzmann collision integral. These include the H theorem (i.e. it 

drives the electron distribution function to a Maxwellian), as well as conservation of 

energy and momentum. 



B. Isotropie Scatterer Approximation 

In typical applications to PIC codes, it would be completely impractical (in terms 

of numbers of particles, computation time, and statistical fluctuations) to actually 

compute the coefficients H(v) and G(v) as multiple integrals, and then perform numerical 

differentiations. However, the Fokker-Planck equation can be reduced to a much more 

tractable form by assuming in Eqs. (12) that the distribution function f(v) of scatterer 

electrons is a function of only the magnitude of the velocity, in the reference frame in 

which the electron fluid velocity is zero. This approximation enormously simplifies and 

speeds up the calculation. In collisional systems, it is normally a reasonably good 

approximation, since all electron collisions tend to isotropize the electron distribution 

function. The thermal part of the electron distribution isotropizes particularly rapidly, 

and e-e scattering of any electron (even a fast one) is normally dominated by scattering 

off thermal electrons. We emphasize that in the Fokker-Planck equation (9), it is not 

necessary to assume that the test particle distribution f(v) is isotropic. It is reasonably 

accurate to follow the evolution of an anisotropic test particle distribution while 

assuming that the scattering is off an isotropic distribution of field particles. However, 

this approximation does interfere with the exact conservation of momentum and energy 

which is a property of Eq. (9). In Sec. 4 we discuss methods to insure conservation. 

When the assumption of isotropic scatterers is made, the integrals over the polar 

and azimuthal angles in velocity space can be done in closed form, and Eqs. (12) reduce 

to 

H(v) = —J0
vdvv2f(v) + 83tnJv°°dvvf(v), (13a) 

G(v) = —   fdvv23v +V  f(v) + JJdvv(v2 + 3v2)f(v) . (13b) 



The velocity derivatives in Eqs. (10) can then be calculated analytically from Eqs. (13), 

which greatly reduces noise in the simulation. We find Fd(v) = Fd(v)(v/v), with 

Fd(v) = 
47me4 . dH 

m 
X— = - 

dv 
32rc2ne4 

2   2 m v 
?ij0

vdvv2f(v). (14a) 

Since G is a scalar function of the scalar variable v, the tensor 92G/8v3v is diagonal in a 

coordinate system where the 3-component is parallel to v. The only non-zero components 

of the tensor Dare 

D33(v) = 
47tne 

m 
92G       4jme4 

3vo9v, m 
d^G 

dv2 

327t2ne4 

3m2 4j0
Vdvv4f(v) + j;dvvf(v) 

(14b) 

~  , x    ~   , ,    4jme4,   32G      4nne4. 1 dG 
Dn(v) = D22(v) = —X 2     *-A *      v dv 

167t2ne4 

3m2 

in        dvld\l 

4/0
Vdvv2(3v2-v2)f(v) + 2j;dvvf(v) 

(14c) 

Another type of approximation is usually necessary, due to the fact that the 

number of particles in a simulation will normally be too small to calculate the integrals in 

Eqs. (14) at every grid point, and the time involved would be inordinate. Therefore, it is 

necessary to perform some type of spatial or temporal averaging in this step. In Sec. 3, 

we show exactly how we choose to do this in our magnetized-electron simulation. 

C. Formulation of the Langevin Equation 



In order to utilize this formulation in a PIC code, it is necessary to go from the 

Fokker-Planck equation to the Langevin equation. To first order accuracy in At, the 

Langevin equation in the form 

Av = FdAt + Q, (15) 

is equivalent to the Fokker-Planck equation (9). Here Av is the change in a particle's 

velocity, due to e-e scattering, during a finite time step At, Fd is the dynamical friction, 

and Q is a random velocity vector chosen from the distribution 

W)=(2^t)-D11D331/2eXP 

(      Q3'       Q/ + Q 2 

v   2D33At      2DnAt   j 
(16) 

However, using Eqs. (14) - (16) and taking averages over the stochastic variable Q, one 

can easily show that there is an error of order (At)2, always positive, in the total electron 

energy e after the collision step, i.e. 

<e'>-e = 27rm(At)2j0~dvv2Fd
2f(v). (17) 

Exact energy conservation (as an ensemble average over the stochastic variable Q) can be 

restored by simply adding a correction 8F(v) to Fd(v), specified by the equation 

6F + |L(8F)2=-|LFd
2. (18) 

For most purposes, it is more than adequate to insure that the Langevin equation 

conserves energy to second order in At, which will hold if SF(v) is given by the much 

simpler approximate form of Eq. (18), 
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At 
2v*' 

5F(v) = -—Fd
2(v). (19) 

We note in passing a surprising property of Eq. (14a): for a test electron with 

speed v, scattering off electrons with speed v > v does not contribute to the friction 

coefficient Fd(v). This is a peculiarity of Coulomb scattering off an isotropic distribution 

of scatterers. As a result, the friction is very small for electrons with velocity much less 

than the thermal velocity ve, and if the EEDF happens to be hollow, with v > v^n for all 

electrons, then an electron with v = v^n will feel no friction at all. At first sight, it seems 

paradoxical that such electrons will not be driven toward a distribution centered about the 

mean electron velocity Ue. However, what actually happens is that a low velocity electron 

will, on the average, diffuse up toward speed ve (the diffusion coefficients have 

contributions from scattering off electrons with v > v , and do not go to zero for small v), 

and then feel a strong friction that tends on the average to center it about Ue. 

3. Application to a Magnetized Plasma 

A. Langevin Scattering Formulation for Magnetized Electrons 

This electron-electron scattering model was developed primarily for use in our 

recently developed 2D-3v (axisymmetric) simulation model of ECR processing 

plasmas.15 In this code, both the electrons and ions are represented as simulation 

particles, subject to a strong external magnetic field, self-consistently determined 

electrostatic fields, and collisions. The ions are not typically strongly magnetized; hence 

their trajectories are followed in full detail in two spatial and three velocity coordinates. 

However, the electrons are strongly magnetized, and can be regarded as firmly attached to 

a given magnetic field line. [Because of the axisymmetry, all drifts are azimuthal, and 

thus do not affect the electron trajectory in the r-z plane of the simulation.] Thus, we use 

the actual field lines as one set of elements for a curvilinear grid, allowing us to specify 

the position of an electron by the field line number to which it is permanently attached, 

and a single axial coordinate z giving its location on the field line. In velocity space, the 

11 



code follows the parallel velocity v« of each electron, and the magnitude of the 

perpendicular velocity VJL, but there is no need to follow the phase of the perpendicular 

motion. In practice, we follow the magnetic moment \i = mvi2/2IBI, which is constant 

during the interval between collisions, rather than propagating vx itself. The unique 

feature of our simulation is that Poisson's equation is not used, but rather the electric field 

is obtained from the quasi-neutrality, much like the procedure that is used in fluid 

simulations. This allows the simulation to avoid inverse plasma frequency time scales 

and Debye length scales. For both electrons and ions, the relevant length scale is the 

macroscopic length scale, and the minimum time scale is this length scale divided by the 

electron thermal velocity. This simulation scheme speeds up the calculation by several 

orders of magnitude (for the usual ECR reactor) as compared to a standard particle in cell 

code with the electrostatic field calculated from Poisson's equation. The details of the 

simulation scheme and some results are given elsewhere. 

In applying the e-e scattering formalism to this type of guiding center electron 

model, it is necessary only to specify what V|' and v.].' are after the collision, given v« and 

vx before the collision. To transform the Langevin scattering results to these variables, it 

is convenient to use a coordinate system with the 3-coordinate parallel to v, the electron's 

velocity before collision, the 1-coordinate normal to v but in the B-v plane, and the 2- 

coordinate normal to both B and v, as shown in Fig. 1. Let a be the angle between B and 

v, so that tan a=vj./ v«. After scattering, the new velocity v' is given by 

v,' = Qi, (20a) 

v2' = Q2, (20b) 

v3' = v + FdAt + Q3. (20c) 

Transforming back to v/ and vx', we find from Fig. 1 that 

vii' = v3'cos a - vi' sin a = (v + FdAt + Q3)cos a - Qi sin a, (21a) 

vx'2 = (v3' sin a + v,' cos a)2 + v2'
2 = [(v + FdAt + Q3) sin a + Qi cos a]2 + Q2

2'       (21b) 

12 



Equations (21), together with Eqs. (14)-(16), give the basic Langevin formulation for the 

e-e scattering in a magnetized system. 

B. Data Structure and Numerical Considerations 

By assuming that the distribution of scatterers is isotropic, we have reduced the 

scattering coefficients Fd(v),) Dn(v) and D33(v) to grid-dependent quantities that also 

depend on the magnitude of the electron velocity. However, statistical fluctuations 

incident to the finite number of simulation particles would make it virtually impossible to 

actually compute these velocity-dependent coefficients by performing the velocity 

integrals of Eq. (14) at every grid point. (It would also be inordinately time-consuming.) 

For example, in a two dimensional PIC simulation with a 100x100 grid, even with a 

million particles there are only 100 particles per cell, leading to fluctuations at least on 

the order of 10% (and even worse for v-dependent quantities). Clearly, some spatial 

and/or temporal averaging is necessary. In our magnetized-electron code, there is an 

obvious way to do this. The normalized velocity distribution fj(v) is constructed for all of 

the electrons on field line j, and is then used to calculate the velocity integrals in Eqs. 

(14). However, the density n used in Eq. (14) is taken to be the local electron density on 

the grid. Since electrons, in their orbits, rapidly sample an entire field line, this should be 

a very good approximation. It is also very efficient numerically, since the integral 

quantities in (14) can simply be accumulated at the same time that the particle densities 

are laid down on the grid. 

In the next section, we show how to build exact energy and momentum 

conservation into the scattering formalism. If the conservative form (22) or (23) is used, 

the only limits imposed on the scattering time step At are those necessary to insure 

accuracy. Thus, At should be no more than a fraction of the e-e collisional relaxation 

time. In many cases, there will be stronger constraints imposed by other aspects of the 

simulation. For example, if e-e scattering is competing with inelastic electron-neutral 

scattering, then At should be no larger than the characteristic time for the latter process. 

In a bounded plasma, sheath potentials may be determined by competition between 

13 



escape of high-energy electron through the sheath, and replenishment of high-energy 

electrons via e-e collisions. Then At must be no larger than the time step used for 

electron escape. In other cases, the limit on At may arise from the characteristic time for 

electrons to transport spatially from one region to another. 

4. Energy and Momentum Conservation 

The Fokker-Planck equation (9), with coefficients from Eqs. (10) - (12), exactly 

conserves momentum and energy. However, the numerical implementation of e-e 

scattering, as described in Sees. 2 and 3, may suffer small deviations from momentum 

and energy conservation. Errors in energy conservation are particularly troublesome, 

since Lemons, et al22 have shown that they can lead to systematic (non-random) drifts in 

total energy that can become substantial over long times. These types of effects could 

lead to significant errors in EEDF, and therefore in ionization fraction, chemical make-up, 

and other such properties of the plasma. Momentum conservation errors may also be of 

concern, if they interfere with the calculation of electric currents to sufficient accuracy. 

Momentum and energy non-conservation can occur for two reasons. First, if the 

electron velocity distribution f(v) is not exactly isotropic, the assumption of an isotropic 

distribution f(v) for the scatterers is inconsistent with the conservation laws, even if the 

mean electron velocity Ue is zero. Obviously, the situation will be worse if lie is non-zero 

and the isotropic distribution f(v) is prepared in a frame of reference other than that of Ue. 

In Sec. 3, we have chosen to calculate f(v) in the lab frame for all the electrons on a given 

field line, so if Ue is non-uniform along the field line, the scattering formalism clearly will 

not conserve electron momentum locally. Secondly, the diffusion part of the Langevin 

equation involves the choice of random velocity increments Q. On the average, these 

increments will conserve energy and momentum, but given the finite number of 

simulation particles N at any grid cell, errors of the order of VN can always occur. 

Fortunately, these non-conservation effects are small, particularly if ue« ve, as is 

the case in our ECR plasma simulations and many other typical situations.   It is then 
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particularly easy to make corrections that adequately restore the conservation laws. In 

general, one can restore momentum and energy conservation locally by using a 

renormalization procedure described by Lemons, et al.22 We take note of the electron 

fluid velocity Ueii(z) and the electron temperature Te(z) on field line j before the e-e 

scattering step, and the values Uei'(z) and Te'(z) after scattering. In general, they will be 

slightly different. We then reset the velocity vn' of electron n located at z, according to 

the formula 

^/-u/). (22) 

In practice, we find that Eq. (22) is overkill. Small random errors in electron 

momentum conservation during e-e collisions are usually unimportant, since collisions of 

electrons with neutrals and/or control the electron current. Furthermore, it is usually 

sufficient to insure energy conservation globally over some large area, in our case over a 

field line, since the velocity integrals in Eq. (14) are performed as an average over a field 

line. Thus we use the very simple velocity renormalization 

(23) 

where Wj is the total kinetic energy of all the electrons on field line j before the e-e 

collision step, and Wj' is the same quantity after the collision step. 

5. Electron-Ion Scattering 

The Fokker-Planck equation for electron-ion (e-i) scattering is derived in exactly 

the same way as Eqs. (9) - (12). The only difference in the results is that Eqs. (12) are 

replaced with 
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n(y) = z2^±3l(^^l (24a) 
nij     J        |v-v| 

G(v) = Zi
2Jd3vfi(v)|v-v|, (24b) 

where Zje is the ion charge and fj(v) is the ion velocity distribution. 

The rate of energy exchange between electrons and ions is down by order rrie/mi, 

which makes it negligible for many purposes. If we neglect energy exchange, and treat e- 

i scattering as essentially just pitch-angle scattering of the electrons off infinitely massive 

ions, then the formalism becomes particularly simple. It is then appropriate to 

approximate the ion velocities, which are always small compared to ve, as zero, so that 

Eqs. (24) reduce simply to 

H = -^-, (25b) 
v 

G = Zi2v. (25b) 

According to Eqs. (14), the dynamical friction coefficient is 

47me4Zj2 , ,_, . 
Fd=- 2-y-X, (26a) 

m v 

and the diffusion coefficients are 

D33(v) = 0, (26b) 

47me4Zj2, ._, . 
D„(v) = D22(v) = j-M.. (26c) 

m v 
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For scattering of electrons off infinitely massive ions, momentum conservation is 

not a consideration. Electron energy should be conserved exactly in every collision, so 

the simplest procedure is to not use the dynamical friction from Eq. (26a), but simply to 

specify AV3 so as to insure exact energy conservation: 

(v+Av3)
2+Q!2+Q2 = v2, (27) 

where Qi and Q2 are the stochastic increments to the velocity components normal to v, 

chosen from the distribution (16). If we neglect second order in Qi/v and Q2/V, Eq. (27) 

becomes simply 

Av3 = Q!2 + Q2
2 

2v 
(28) 

and in the case of magnetized electrons, the electron velocity components parallel and 

perpendicular to B, from Eqs. (21), become 

V11   = V- 
Qi +Q2 

2v 

2^ 
cos a — Q1 sin a, (29a) 

/2 
V,      = 

(     Q,2 + Q2^ v- —  

-[2 

\ 2v 
sina + QjCosoc 

J 
+ Q2 (29b) 

If it is important to calculate energy transfer between the electrons and ions, it is 

easy to modify the formalism to include this effect. 

6.   Computational Examples 

17 



In this section, we present some simple computational examples as test cases for 

our formulation of e-e scattering. We consider a ID system with periodic boundary 

conditions. (In the context of our 2D ECR plasma code, this could be thought of as a 

single magnetic field line, with uniform magnetic field. However, the calculations in this 

section do not include the end losses that would occur in a bounded plasma.) All initial 

conditions (e.g., density, distribution function) are spatially uniform. The system length is 

35 cm and the cell size is Az = 1 cm. We use 15,000 macroparticles to represent the 

electrons. The electrons are scattered according to Eqs. (15) - (18) at intervals At = 8x10" 

sec. 

A. Approach to Equilibrium 

In this case, we consider the evolution of the electron distribution from a very 

anisotropic and non-Maxwellian initial condition, with e-e scattering the only physical 

process represented in the simulation. The initial distribution represents two cold counter 

streaming electron beams, 

f(v,i, vx, t=0) = I [8(v„ - v0) + 6(VII + v0)] 5(v±), (30) 

with beam energy imv0
2 = 4 eV The plasma density is 1012 cm'3.  Since every cell is 

identical, this is simply a point problem from a fundamental point of view. However, it is 

still useful to think in terms of a simulation of all the points along a field line, since this is 

the way the data structures and statistical properties of the simulation are organized. 

We recall that the diffusion coefficients of Eqs. (14) decrease rapidly with particle 

speed v, so that one expects the approach to equilibrium to proceed rapidly for electrons 

in the low-energy (thermal) range, and more slowly in the high-energy tail. The standard 

estimate18 for the relaxation time is trei = 6xl0'7 sec. Fig. 2 shows plots of the reduced 

electron distribution functions f(vu) and f(vx), at four different times. In these plots, the 

abscissa is chosen to be Eg s {m-v,2 or ex E {m-vi2.   In Fig. 2a, at the early time t = 

5xl0"8, the distribution functions still show the cold two-beam structure.   Figure 2b 
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shows the distribution functions at t = lxlO"7sec. By this time, f(vn) has become single- 

peaked and is fairly close to Maxwellian in the energy range up to 6 eV, but at higher 

energies the distribution falls off, and anisotropy is increasingly evident. Figure 2c shows 

the distributions at t = 2xl0"7 sec. By this time, both f(vn) and f(vi) are close to 

Maxwellian, but still at slightly different temperatures. Fig. 2d shows that at t = 6xl0"7 

sec (the predicted relaxation time), the distribution functions are isotropic and 

Maxwellian over their entire energy range. 

B. Balance Between Heating, e-e Collisions, and Inelastic Collisions 

In this example we model, in a very simplified way, the combined effect of 

several processes that occur in an ECR discharge: plasma heating, electron-electron 

collisions, and electron energy loss due to ionizing collisions. In the model, electrons 

with energy e < 3 eV are heated every time they pass a "resonant zone". The heating is 

implemented by giving each electron a velocity kick each time it passes by the position z 

= 3 cm, with the velocity increment Av chosen randomly from a Gaussian distribution 

with mean value i m(Av)2 = 1 eV. We also include electron energy loss due to "ionizing 

collisions" with neutral atoms. (However, we do not create new electrons when one of 

these "ionizing collisions" occurs. Since we are simulating a closed system with no 

particle losses, this would preclude the attainment of steady state.) The ionization cross 

section for Ar is used, as given by Tachibana23. This cross section increases from about 

10"16 cm2 just above the ionization threshold £;z = 15.76 eV, to a maximum of 3.9xl016 

cm2 at 60 eV. The neutral gas pressure is taken to be 5 mTorr. Each electron loses 

exactly 15.76 eV of energy when it is scattered. Electron-impact excitation collisions are 

omitted from this simple model, even though they do represent a significant energy loss 

mechanism in a real gas. 

Figure 3a shows the equilibrium electron energy distribution function for a case 
in ^ with plasma density rie = 10 cm". At this value of ne, electron-electron scattering is 

weak, and ionization energy losses deplete the tail of the distribution function for energies 

above £jZ. Figure 3b shows the EEDF for a plasma of density 10n cm"3. Here, e-e 

scattering is strong enough to drive the electron distribution to Maxwellian in the regime 
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below £iZ, and to significantly replenish the distribution above the ionization threshold. 

Figure 3c shows the EEDF for plasma density 1012 cm"3. In this case, e-e scattering is 

easily strong enough to redistribute energy from the heating region e < 5 eV to the tail 

region, and the equilibrium distribution is very nearly Maxwellian over the entire energy 

range. 

7.   Conclusions 

The Langevin equation can be used to formulate electron-electron and electron- 

ion collisions in a probabilistic manner analogous to the Monte Carlo treatment that is 

often applied to electron-neutral or neutral-neutral scattering. The difference is that e-e 

and e-i collisions are very frequent and very weak, so that the Langevin equation 

represents the net probabilistic effect of very many small-angle scatterings. Therefore, 

time steps can be long compared to the time scale for interactions between particular pairs 

of charged particles. The exact form of the Langevin equation is well known, but is 

impractical for numerical applications, due to the need for very large numbers of 

simulation particles, extensive data structures, and burdensome computations. We have 

used several simple and well-justified approximations to reduce the formulation to a 

manageable and efficient form. We have also provided simple procedures for insuring 

that momentum and energy are conserved in the numerical implementation. The general 

formulation is applicable to either unmagnetized or magnetized electrons, and in the latter 

case we have expressed the results specifically in terms of the velocity components 

parallel and perpendicular to B. 
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Fig. 1 — Geometry for the transformation from coordinate 3 (parallel to the velocity v before scattering), 1 (normal 
to v but in the B-v plane), 2 (normal to both B and v) to coordinates || (parallel to B) and 1 (normal to B). 
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Fig. 2 — Reduced electron distribution functions f(vj) (solid curve and f(Vj.) (dashed curve) at times 
(a) 5 x 10~8 sec, (b) 1 x 10"7 sec, (c) 2 x 10"7 sec, and (d) 6 x 10-7 sec. 
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Fig. 2 (Continued) — Reduced electron distribution functions f(vj) (solid curve and f(Vj_) (dashed curve) at times 
(a) 5 x 10"8 sec, (b) 1 x 10"7 sec, (c) 2 x 10"7 sec, and (d) 6 x 10"7 sec. 
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Fig. 2 (Continued) — Reduced electron distribution functions f(V|) (solid curve and f(vj (dashed curve) at times 
(a) 5 x 10-8 sec, (b) 1 x 10"7 sec, (c) 2 x 10-7 sec, and (d) 6 x 1(T7 sec. 
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Fig. 3 — Electron energy distribution functions for Ar at pressure 5 mTorr, after steady state has been reached. 
Included are a simple model of bulk electron heating, e-e collisions, and electron energy losses to ionizing 
collisions. Excitations, and electron creation and loss are not included, (a) i^ = 1010 cm-3. (0)1^= 10" cm-3, 
(c) n, = 1012 cm-3. 
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Fig. 3 (Continued) — Electron energy distribution functions for Ar at pressure 5 mTorr, after steady state has been 
reached. Included are a simple model of bulk electron heating, e-e collisions, and electron energy losses to ionizing 
collisions. Excitations, and electron creation and loss are not included, (a) n,, = 1010 cm-3, (b) r^ = 10" cm-3, 
(c) n, = 1012 cm-3. 
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Fig. 3 (Continued) — Electron energy distribution functions for Ar at pressure 5 mTorr, after steady state has been 
reached. Included are a simple model of bulk electron heating, e-e collisions, and electron energy losses to ionizing 
collisions. Excitations, and electron creation and loss are not included, (a) i^ = 1010 cm-3, (b) nj = 10" cm-3, 
(c) ne = 1012 cm"3. 
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